Bacterial ecology and evolution across salinity barriers and gradients
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Background: Conclusions:
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* Distinct brackish (B) bacterial lineages (Hugerth et al. 2015) with unclear Cross-biome transitions are accompanied by gain/loss of specific
relationship to other aquatic bacteria gene functions and followed by proteome optimization.

* Bacterial and protist community composition shifts along the brackish salinity * Protists are ecologically less sensitive to salinity than bacteria,likely
osradient. (Herlemann et al. 2011, Hu et al. 2015). thanks to the benefits of compartmentalization.

Study 1: Large-scale phylogenomics of aquatic bacteria reveal
molecular mechanisms for adaptation to salinity
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Results 2. Cross-biome transitions: rare, Bacterial adaptation to a new salinity regime (biome) entails...
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Study 2: Distinct bacterial and protist plankton diversity dynamics biORXiV
uncovered through DNA-based monitoring of the Baltic Sea
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b. protist community composition. Both are given as a function of mean abundance across the samples the dbOTU was found in in high brackish salinities in high brackish salinities

and maximum abundance at one of the sides of the salinity barrier. |
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