Gene gain and loss in bacteria transitioning between aquatic biomes

Krzysztof T. Jurdziński¹, Maliheh Mehrshad², Ziling Deng¹, Stefan Bertilsson², Anders F. Andersson¹

¹ Department of Gene Technology, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden; ² Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden

Background:

- Bacteria rarely undergo cross-biome transitions. \bullet
- High rates of **horizontal gene transfer** in bacteria are \bullet maintained due to rare gains of genes key to adaptation.
- Strong selective pressure restricting bacterial genome sizes leads to frequent losses of redundant genes.

Conclusions:

Identify

MSG 1

(freshwater)

Specific genes are **gained/lost** throughout transitions between aquatic biomes by diverse bacterial lineages. These genes can be:

- directly connected to adaptation to different concentrations of inorganic ions and osmotic pressure;
- connected to other genomic and physiological changes accompanying transitions;

Transitions as pairs of

monobiomic sister

groups (MSGs)

MSG 2

(brackish)

exposure to different mobile genetic elements.

Data analysis:

Publicly available metagenome assembled genomes (MAGs)

11,276 MAGS ≥75% completeness ≤5% contamination Metagenomes: 416 freshwater,

85 brackish, 243 marine

Results:

Freshwater ↔ **Marine**

3575

~species

K03549: KUP system potassium uptake protein K08974: putative membrane protein

Phylogeny

reconstruction

- K03499: trk/ktr system potassium uptake protein
- K07301: Na+/Ca2+ antiporter

Names of KOs differentially present for more than one transition type are

KEGG

#, \$, ^ or * hoforo KO numbor

Gained/lost genes

Presence/absence of

Pairwise comparison

across transitions.

KEGG Orthology (KO) Groups.

Present in	-20 K07. -20 K160	052: MscS family membrane prote	ein highlighted.	before KO number
Freshwater Marine	Freshwate	55	Varine	Groups of KOs co- annotated (>50% of
Freshwater ← 20 12 12 12 12 12 12 12 12 12 12	 Brackish g2+ transporter A dioxygenase extradiol chuate 4,5-dioxygenase, alpha chain tem potassium uptake protein stem potassium uptake protein antiporter 6-phosphate synthase/phosphatase membrane protein 	So Brackish	Brackish ↔ Marine K01480: agmatinase K04759: ferrous iron trans K00809: deoxyhypusine s K01585: arginine decarbo K03782: catalase-peroxic K21498: antitoxin HigA-1 K19159: antitoxin YefM K07064: uncharacterized #K05844: ribosomal prote #K18310: beta-citryloluta	cases) to the same genes sport protein B synthase oxylase dase protein ein S6L-glutamate ligase
 Level C KO annotation Alanine, aspartate and glutam Arginine and proline metabolis Betalain biosynthesis Bacterial motility proteins Cell motility Drug metabolism – other enzy Function unknown General function prediction on Glycosyltransferases 	ate metabolism M 13 Prokaryotic defense system 14 Protein processing 15 Replication and repair 16 Ribosome biogenesis 17 Secondary bile acid biosynthesis 18 Secretion system 19 Structural proteins 20 Transporters	Digital copy of the poster and more details here:	 #K14940: gamma-F420- K03284: magnesium trans K03282: large conductand K02237: competence prot K06987: uncharacterized K03321: sulfate permease K02036: phosphate trans K02040: phosphate trans K02038: phosphate trans K02037: phosphate trans K01673: carbonic anhydra K07007: 3-dehydro-bile a 	-2:alpha-L-glutamate ligase sporter ce mechanosensitive channel tein ComEA protein e, SulP family port system ATP-binding protein port system substrate-binding protein sport system permease protein sport system permease protein ase acid Delta4,6-reductase

Nitrogen metabolism

Polycyclic aromatic hydrocarbon degradation

KEGG orthologs (KOs) significantly (FDR < 0.1) differentially present between pairs of MSGs:

- The numbers of transitions (MSG pairs) between each two lacksquareof the biomes and the results of gene gain/loss analysis are given by the arrows connecting the two compared biomes.
- KOs were clustered by similarity in presence/absence patterns across all the MSG pairs.

K07290: AsmA family protein K07115: 23S rRNA (adenine2030–N6)–methyltransferase 21 K02482: NtrC family, sensor kinase K07343: DNA transformation protein and related proteins K03630: DNA repair protein RadC K03413: chemotaxis family, chemotaxis protein CheY 21 K20974: two-component system, sensor histidine kinase ^K07497: putative transposase ^K07483: transposase K02238: competence protein ComEC K07460: putative endonuclease K07391: magnesium chelatase family protein

